
–1

Decomposition: ModulesDecomposition: Modules
 What’s wrong with this?

API API

APIAPIAPI

1

APIAPIAPI API

CS3215 Set#4 APIs

CS3215: Software Engineering ProjectCS3215: Software Engineering Project
CS3215, LN set #4: Specifying APIs (Assignment #2)

API Public: interface

• We want to let others use our module without
knowing all the module details - how?

Module Hidden, Private:
implementation

2

• We want to change a module without affecting other
modules – how?

• API: a description of what you can do with a module

CS3215 Set#4 APIs

–2

API DesignAPI Design
1. Decide about which operations should make it into

the API

– How will others use my module?

2. Document – communicate APIs

– Must be understandable but also precise

 APIs are used many times by the clients

Good API will save time of many– Good API will save time of many

– Bad API will hinder productivity of many

– Incorrect APIs may lead to project disasters

 Quality APIs are an essential part of architecture

3
3

CS3215 Set#4 APIs

How to identify API operations?How to identify API operations?
 Multiple clients using My Module:

APIAPIAPI

Client 1 Client 2 Client 3

– I need know how different Clients use My Module

API

My Module

1. Work in pairs, with another student playing role of
a Client

2. Ask third student to review API documentation

4CS3215 Set#4 APIs

–3

Major components of an SPAMajor components of an SPA

query result viewing
user interface

program entry
user interface

query entry
user interface

query result
projector

query result
formattedz

query result
raw format

design extractor parser

query in PQL

source program
in SIMPLE

5

query
pre-processor

query
evaluator

Program
Knowledge Base

PKB

query tree

design abstractions

design abstractions
AST AST

CS3215 Set#4 APIs

What is stored in the PKB?What is stored in the PKB?

PKB

AST_adt CFG_adt

Modifies_adt
Uses_adt

P T bl dt

PKB

6

VarTable_adt ProcTable_adt

CallsTable_adt

CS3215 Set#4 APIs

–4

Major ADTs in the PKBMajor ADTs in the PKB
 AST_adt - an abstract syntax tree

 CFG_adt - a control flow graph

 Var_adt - stores program variable info (a symbol table)

 ProcTable_adt - stores program procedure info (symbol

table)

 CallsTable_adt - indicates procedure call relationship

 Modifies adt - indicates which variables are modified in a Modifies_adt indicates which variables are modified in a

given statement or procedure

 Uses_adt - indicates which variables are modified in a given

statement or procedure

7
CS3215 Set#4 APIs

Understanding associations among Understanding associations among
ADTsADTs

8
CS3215 Set#4 APIs

–5

Associations among ADTsAssociations among ADTs
Document associations among ADTs in the following way:

Association The meaning and role of association

Table 1. Documenting mappings among ADTs in the PKB

mapping among source
program and AST

for each statement number we shall be able
to identify AST node that contains that
statement and vice versa

mapping among AST
and CFG

for each AST node we shall be able to
identify a corresponding CFG node and vice
versa

i f f h d h ll b bl

9

mappings from
Proc_Table to Modifies
and from Modifies to
Var_Table

for each procedure we shall be able to
identify to Modifies vector that indicates
variables (mapping to Var_Table) modified
in this procedure

etc.

CS3215 Set#4 APIs

Who and how will use PKB?Who and how will use PKB?
source program

in SIMPLESPA
front-end

PKB API for
front-end

PKB API for

interface operation invocation

10

Program
Knowledge Base

PKB

query
processing
subsystem

PKB API for
query

processing
subsystem

CS3215 Set#4 APIs

–6

Identify APIs for different clients

11CS3215 Set#4 APIs

Discover parser’s API to ASTDiscover parser’s API to AST
 Check a dialog in Handbook, Section 9.6:

 Parser: I need create AST. Can you provide me with simple but flexible
means to do that? I definitely do not want to be concerned with how you y y
implement AST.

 AST: That’s great. I still consider a number of options of how to
implement AST. So if you base your decisions on my implementation,
you would have to wait. Also, if I decide to change my implementation
later on, which is likely to happen we are bound to run into constant
problems and lots of re-work. So I will give you AST API - a set of
interface operations to AST. You will be able to work with AST using p g
AST API.

 Parser: At the moment, you have not implemented AST and I have not
implemented a parser. Shall we then just forget about implementation and
come up with abstract AST API that logically makes sense, based on
common sense understanding of essential properties of AST?

12CS3215 Set#4 APIs

–7

Consolidated PKB APIConsolidated PKB API
 PKB API: a union of ADT APIs:

AST_adt CFG_adt

Program Knowledge Base
(PKB)

AST API CFG API VarTable API Modifies API other ADT’s API

Modifies_adt
Uses_adt

VarTable_adt ProcTable_adt

CallsTable_adt

13CS3215 Set#4 APIs

How to describe API operations?How to describe API operations?

14CS3215 Set#4 APIs

–8

Agree on API specification formatAgree on API specification format
ADT name {

Overview: explain the rationale and responsibility of an ADT

Public interface: interface operations documented as follows:Public interface: interface operations documented as follows:

Operation header:

returned-value operation-name (list of parameters)

– give names to parameters, specify types only if necessary

*Parameters (optional):

Description: describe what the operation does

describe both normal and abnormal behavior

}

15CS3215 Set#4 APIs

API for Variable TableAPI for Variable Table
 Variable Table stores program variables:

index variable name descriptors

Wh d H V i bl T bl ?

index variable name descriptors

1 x

2 y

3 z

 Who and How we uses Variable Table?

– Parser must insert variables to the Table

– Others must get variable name stored at given index

16CS3215 Set#4 APIs

–9

API for Variable TableAPI for Variable Table
VarTable{

Overview: VarTable keeps the program variables

 Public Interface:

INDEX insertVar (VAR v);INDEX insertVar (VAR v);

Description: If ‘v’ is not in the VarTable, inserts ‘v’ into the VarTable
and returns its index.

STRING getVarName (INDEX ind);

Description: Returns the name of a variable at VarTable [ind]

 If ‘ind’ is out of range, Throws: InvalidReferenceException

Else, returns its index and the table remains unchanged.

17

g , p

INDEX getVarIndex (VAR v);

 Description: If ‘v’ is in VarTable, returns its index; otherwise,
returns -1 (special value)

INTEGER getSize();

Description: Returns the total number of variables in VarTable
 CS3215 Set#4 APIs

Adding more rigor to API specsAdding more rigor to API specs
Bank Account {

Overview: ….

 Public Interface:

void deposit (amount) ;
before operation

void deposit (amount) ;

 Requires: amount > 0 ;

 Description: balance’ () = balance () + amount.

 void withdraw (Money amount) ;

 Requires: amount > 0 and

 amount <= balance () + overdraftLimit () ;

Description: balance’ () = balance () – amount.

Amount balance () ;

after operation

 Requires clause describes pre-conditions

 We use elements of formal notation to make description
shorter, clearer

Amount balance () ;

 Description: returns the balance on the Account.

18CS3215 Set#4 APIs

–10

Tips for designing APIsTips for designing APIs
Which operations do I need in interfaces of ADTs:

AST, CFG, Modifies etc. ?

 work in pairs on specific interfaces:
– parser to AST

– design extractor to AST

– design extractor to CFG

– query evaluator to CFGquery evaluator to CFG

 independent review of interface documentation
by a student not involved in designing a
particular interface

19CS3215 Set#4 APIs

Tips for specifying APIsTips for specifying APIs

 Adopt standard way of documenting APIs

– naming conventions

if d i ti j t– unify descriptions across project

 Keep description possibly simple, concise, but
precise, unambiguous, complete

– API must be understandable for others!

 Implementation- and language-independent

 Use symbolic names for types: STRING, INT

 Use elements of formal notations in the API
specification, only when it really helps

20CS3215 Set#4 APIs

–11

Completeness and the right level of Completeness and the right level of
abstractionabstraction

completeness of APIs:

 complete set of APIs: can ADT’s clients accomplish
their tasks by consulting API of the ADT?their tasks by consulting API of the ADT?

the right level of abstraction of APIs:

 at this stage, APIs should reflect only essential
properties of ADTs
– you will be able to add extra operations (e.g., to address

optimizations, efficiency concerns) when you consideroptimizations, efficiency concerns) when you consider
implementation of ADTs

 APIs should not make assumptions regarding
implementation

21CS3215 Set#4 APIs

APIs and complexityAPIs and complexity
 Well chosen, clearly documented, and stable APIs

are keys to complexity reduction
API

APIAPI

API

API

22

 At times you may need to compromise rules of good design

APIAPIAPI API

CS3215 Set#4 APIs

–12

Incremental development of Incremental development of
APIsAPIs

S b it i iti l API i i t 2 Submit initial APIs in assignment 2

 Discuss with your supervisor

 Submit complete PKB APIs (assignment 3)

--- The End ---

23CS3215 Set#4 APIs

